Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/09258388)

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Reinvestigation of the isothermal section of the Ce–Co–Ge ternary system, at 700 ◦C

A. Soudé^a, O. Tougait^{a,∗}, M. Pasturel^a, D. Kaczorowski^b, M. Konyk^c, H. Noël^a

^a Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, Avenue du Général Leclerc, 35042 Rennes, France ^b Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland

 c L' viv State University, Kyryla and Mefodiya 6, 290005 L' viv, Ukraine

article info

Article history: Received 22 June 2009 Received in revised form 28 August 2009 Accepted 31 August 2009 Available online 15 September 2009

Keywords: Intermetallics X-ray diffraction Metallography Crystal structure Heavy fermions

ABSTRACT

The solid state phase equilibria in the Ce–Co–Ge ternary system at $700 °C$ were investigated by means of X-ray diffraction and scanning electron microscope–energy dispersive X-ray spectroscopy. A total number of nine intermediate phases were characterized and the homogeneity ranges of the various ternary solid solutions of the binary boundary systems (Ce–Co, Ce–Ge and Co–Ge) were studied. The new ternary phase, CeCo_{13−x}Ge_x (4 ≤ x ≤ 4.5) has been discovered. It crystallizes in the tetragonal space group I4/mcm (no. 140), with the cell parameters $a = 7.974(5)$ Å and $c = 11.856(5)$ Å for $x = 4$. CeCo₉Ge₄ derives from the CeNi $_{8.5}$ Si_{4.5}-type, but, with a perfect ordering of the atoms on the crystallographic sites. The phase diagram comprises seven extensions of binaries into the ternary system, eight stoichiometric ternary phases, CeCoGe, CeCo₂Ge₂, CeCoGe₃, Ce₂Co₃Ge₅, Ce₂CoGe₃, Ce₃CoGe₂, Ce₅CoGe₂ and Ce₅Co₄Ge₁₃ and two intermediate solid solutions, CeCo_{1−x}Ge₂ (0 ≤ x ≤ 0.24) and CeCo_{13−x}Ge_x (4 ≤ x ≤ 4.5).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cerium and uranium based intermetallics have been revealed to be a continuous source of intriguing compounds for the study of unusual electronic phenomena. However, the literature comprises numerous examples of conflicting or not fully reproducible results between various research groups, depending on the preparation of the samples. Small changes of the initial composition, which induce either a deviation of the chemical content within a homogeneity range, or the presence of foreign phases, as well as different heat-treatments of the samples, may yield significant discrepancies of the physical properties. Therefore, in addition to detailed studies of the electronic features, sound chemical, structural and thermodynamical investigations of the phases are required.

As part of our ongoing research project on the investigation of crystal-chemistry and electronic properties of ternary intermediate phases combining cobalt, germanium and an f-element having a particular electronic configuration (Ce or U), we present here, the experimental study of the phase relationships at 700 ℃ of the Ce–Co–Ge ternary system. The assessment of the isothermal section was carried out by means of X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive

X-ray spectroscopy (SEM–EDS), revealing the formation of a new intermediate phase, CeCo_{13−x}Ge_x with $4 \le x \le 4.5$, but, preclude the formation of the previously reported individual compounds, $Ce₃CoGe₆, Ce₁₅Co₄Ge₃₁$ and $Ce₅CoGe₄ [1]$.

2. Literature data

2.1. Binary systems

The binary boundary systems Ce–Ge, Ce–Co and Co–Ge were accepted from the compilation of binary alloy phase diagrams by Massalski et al. [\[2\]. A](#page-5-0) total of twelve binary compounds and seven solid solutions are reported in these binary systems at 700 \degree C. In the Ce–Co system, six compounds are found to be stable: CeCo₂, CeCo₃, Ce₂Co₇, Ce₅Co₁₉, CeCo₅ and Ce₂Co₁₇. The Ce₂Co₇ compound displays two polymorphic forms but only the hexagonal one (Ce₂Ni₇-type) is stable at 700 °C. The Ce–Ge system comprises six phases: Ce₃Ge, Ce₅Ge₃, Ce₄Ge₃, Ce₅Ge₄ defined as line compounds, and CeGe and $Ce₃Ge₅$ having small homogeneity range of 50.0–50.5 at.% Ge and 61.1–62.0 at.% Ge, respectively. The Co–Ge system contains a total of seven intermediate phases; two well-defined compounds, $Co₅Ge₇$ and $CoGe₂$, three compounds with homogeneity domains, CoGe (48.9–51.1 at.% Ge), $Co₅Ge₃$ (34.9–41.6 at.% Ge), $Co₃Ge$ (21.5–22.1 at.% Ge) and two separated solid solutions based on Co, in the range 0–11.4 at.% and 12.6–17.1 at.% Ge.

[∗] Corresponding author. Tel.: +33 2 23 235 740; fax: +33 2 23 236 799. E-mail address: tougait@univ-rennes1.fr (O. Tougait).

^{0925-8388/\$ –} see front matter © 2009 Elsevier B.V. All rights reserved. doi:[10.1016/j.jallcom.2009.08.158](dx.doi.org/10.1016/j.jallcom.2009.08.158)

Table 1

Single crystal X-ray diffraction details for $CeCo₉Ge₄$.

 $R(F) = \sum ||F_0| - |F_c|| / \sum |F_0|,$ $wR_2 = \left[\sum w(F_0^2 - F_c^2)^2 / wF_0^4\right]^{1/4},$ where $w^{-1} = [\sigma^2(F_0^2) + (aP)^2 + bP],$ $P = [\max(F_0^2, 0) + 2F_c^2]/3,$ goodness-of-fit $(G.O.F.) = (F_0^2 - F_c^2)^2 / (n - p)^{1/2}$, n = number of reflections, p = parameters used.

2.2. Ternary compounds and phase relations

The following ternary intermetallic compounds are known from the literature: Ce_2CoGe_3 (hexagonal, AlB_2 -type) [\[3\],](#page-5-0) $CeCo_2Ge_2$ (tetragonal, CeGa₂Al₂-type) [\[4\],](#page-5-0) CeCoGe₃ (tetragonal, BaNiSn₃-type) [\[5\], C](#page-5-0)eCo_{1-x}Ge₂ (tetragonal, CeNiSi₂-type), with homogeneity range of $0 \le x \le 0.14$ according to [\[6\]](#page-5-0) and $0 \le x \le 0.22$ according to [\[7\],](#page-5-0) $Ce₂Co₃Ge₅$ (orthorhombic, $U₂Co₃Si₅$ [\[8\]](#page-5-0) or monoclinic, $Lu₂Co₃Si₅$ -type [\[1\]\)](#page-5-0) but no precision is given about a possible polymorphic transformation or about the crystallographic form stable at 700 °C, CeCoGe (tetragonal, PbFCl-type) [\[9\],](#page-5-0) Ce₃CoGe₂ (orthorhombic, $La₃NiGe₂-type$) [1], $Ce₅CoGe₂$ presents two polymorphic forms: a low temperature form observed in samples annealed at $600\degree C$ (orthorhombic, Y₂HfS₅-type) and a high temperature form observed at temperatures above 1100 ◦C (hexagonal Mn₅Si₃-type) [\[10\],](#page-5-0) and the very recently reported compound $Ce₅Co₄Ge₁₃$ (orthorhombic, new structure type, which can be viewed as a ternary filled version of the $Nb₅Ga₁₃$ -type) [\[11\]](#page-5-0) found in an as-cast sample.

Partial isothermal sections at 600 ℃, for the composition range 0–50 at.% Ce and at 400 ◦C, for the composition range 50–100 at.% Ce, are also available in the literature [\[1\]. T](#page-5-0)he existence and the crystallographic data about most of the ternary phases, listed above, were confirmed. However, limited or discordant results appear for several cases, such as, the crystalline form of $Ce₂Co₃Ge₅$, and the chemical and structural characterizations of the compounds identified with approximate compositions ~Ce₅CoGe₄, ~Ce₃CoGe₆ and ∼Ce15Co4Ge31. A complete reinvestigation of the Ce–Co–Ge ternary system found therefore further motivation.

Table 2

Atomic parameters for CeCo₉Ge₄. Atomic positions were standardized using the Structure Tidy software [\[17\].](#page-5-0)

Atom	Wyck.	χ	v	z	$U_{\text{eq}}(\AA^2)$
Ce ₁	4a	0	Ω	1/4	0.0105(1)
Co ₁	4d	Ω	1/2	Ω	0.0091(2)
Co ₂	16k	0.06704(6)	0.20074(6)	Ω	0.0102(1)
Co ₃	161	0.62198(4)	0.12198(4)	0.17752(4)	0.0096(1)
Ge ₁	16l	0.17377(3)	0.67377(3)	0.12530(4)	0.0102(1)

2.3. Liquid phase

In the Ce-rich corner, the liquid phase can cover a significant surface in the ternary system. Its extension was evaluated according to the liquid phase expansions of the binary systems Ce–Co and Ce–Ge, and the temperature of 700° C has been chosen to minimize its area. The relations between the solid phases and the liquid phase have not been studied in the present investigation.

3. Experimental details

Samples were prepared by melting calculated amounts of the elements in an arc furnace under a residual atmosphere of high purity argon. The starting materials were used in form

Fig. 1. Perspective view of the crystal structure of CeCo₉Ge₄.

Fig. 2. Coordination polyhedron around the independent atoms of the structure of CeCo₉Ge₄, (a) around Ce₁ atom, (b) around Co₁, (c) around Co₂, (d) around Co₃, and (e) around Ge1.

of pieces of high purity elements: Ce (99.9%), Co (99.9%) and Ge (99.999%). The weight losses were generally less than 1%. The samples were annealed at 700° C for 3 weeks in sealed silica tubes, followed by air quenching down to room temperature.

All samples were analyzed by XRD on powder with an Inel CPS 120 diffractometer using a CoK α radiation (λ = 1.789 Å). The POW-DERCELL software [\[12\]](#page-5-0) was used, to compare the experimental diffractograms with the calculated ones, from the known structures and to evaluate the unit-cell parameters. The microstructure was studied on thoroughly polished surfaces of the samples with the use of a Jeol JSM 6400 Scanning Electron Microscope (SEM). The composition of the phases was analyzed by energy dispersive X-ray spectroscopy (EDS) with an Oxford Link-Isis Si/Li analyzer.

Single crystals of $CeCo₉Ge₄$ for X-ray diffraction experiments were obtained from samples with the nominal composition, heated

in an induction furnace up to the melting temperature and then slowly cooled down to room temperature. X-ray diffraction intensities were collected on a Nonius Kappa CCD four circle diffractometer working with MoK α radiation (λ = 0.71073Å). The orientation matrix and the unit-cell parameters were derived from the first 10 measured frames of the data using the DENZO software [\[13\]. T](#page-5-0)he scaling and merging of redundant measurements of the different data sets as well as the cell refinement was performed using DENZO-ScalePack. Semi-empirical absorption corrections were made with the use of the MULTISCAN software [\[14\]. S](#page-5-0)tructural model was determined by direct methods using SIR-97 [\[15\].](#page-5-0) All structures refinements and Fourier syntheses were made with the help of SHELXL-97 [\[16\]. T](#page-5-0)he occupancy rate of each of the independent atoms was successively allowed to vary in order to check a possible substitution mechanism between Co and Ge atoms. Atomic positions have been standardized with the help of STRUCTURE TIDY [\[17\].](#page-5-0)

4. Results

4.1. Crystal structure of CeCo $_9Ge₄$

The existence of this new phase was revealed by means of both X-ray powder patterns and SEM–EDS analyses carried out on a sample with starting composition of Ce:Co:Ge of 10:60:30. Besides the diffraction peaks of the body centred tetragonal structure of $CeCo₂Ge₂$, the additional peaks could be successfully indexed on the basis of a body centred tetragonal unit-cell related to the CeFe $_{8.5}$ Si_{4.5}-type [\[18\]. P](#page-5-0)recise determination of the crystallographic parameters was carried out by single crystal X-ray diffraction experiments. Details of the data collection and crystallographic data are summarized in [Table 1. S](#page-1-0)uccessive refinements of the occupancy parameters, treated separately, revealed full occupancy for all Wyckoff sites, confirming that $CeCo₉Ge₄$ adopts the CeFe_{8.5}Si_{4.5}type, with ordered atom network, as observed for LaFe $_9$ Si₄ [\[19\].](#page-5-0) The atomic parameters are listed in [Table 2, a](#page-1-0)nd interatomic distances are given in [Table 3. T](#page-1-0)his structure, which derives from the cubic NaZn₁₃-type, is characterized by a perfect ordering of the Co and Ge atoms in the unit-cell, as established by the structural refinement. [Fig. 1](#page-1-0) represents a perspective view of the crystal structure of $CeCo₉Ge₄$, which can be described as an alternation of Co and Ge icosahedra layers with Ce atoms layers along the c-axis [\[20\].](#page-5-0) Such a description readily emphasis intralayer interactions between the Ce atoms, but does not reflect perfectly the strong three-dimensional character of the structure, as it is well illustrated by the high coordination number around the atoms and the short Co–Co and Co–Ge bond distances. Ce environment ([Fig. 2a\)](#page-2-0) is constituted of a 24 atoms: 8Co_1 , 8Ge_1 and 8Co_2 and the distances with the Ce atom are respectively 3.282(2) Å, 3.297(2) Å and 3.411(2) Å. The coordination polyhedra around the three Co atoms and $Ge₁$ are distorted icosahedra. As an example of short contacts, $Co₁$ envi-ronment ([Fig. 2b](#page-2-0)) is composed of 4 $Co₃$, 4 $Co₂$ and 4 $Ge₁$ and the distances with the central atom are respectively 2.541 Å, 2.445 Å and 2.459 Å, which are shorter than the sum of the elemental radius [\[21\]. T](#page-5-0)he coordination polyhedra about $Co₂$, $Co₃$ and $Ge₁$ atoms are presented respectively in [Fig. 2c–](#page-2-0)e.

4.2. The isothermal section of the phase diagram of Ce–Co–Ge at 700 ◦C

The isothermal section at 700 \degree C of this ternary system is shown in Fig. 3. It has been constructed by using our experimental results obtained by comparison of the X-ray diffraction patterns, scanning electron micrography and EDS-analysis. The twelve binary phases, stable at 700 ℃, have been confirmed. It has to be noted than, in agreement with Massalski et al. [\[2\],](#page-5-0) no doubt remains about the formation and crystal structure of the binary compound $Ce₅Co₁₉$ which has been observed in the present investigation carried out at 700 ◦C. The solubility of Ce in all the Co–Ge phases is below the detection limit of EDS analyses. Substitution mechanism engages the almost equally sized atom species cobalt and germanium (rCo

Fig. 3. Isothermal section at 700 ℃ of the Ce–Co–Ge system. (A) CeCoGe, (B) $CeCo₂Ge₂$, (C) $CeCo_{1-x}Ge₂$, (D) $CeCoGe₃$, (E) $Ce₅Co₄Ge₁₃$, (F) $Ce₂Co₃Ge₅$, (G) $Ce₃CoGe₂$, (H) $Ce₃CoGe₂$, (I) $Ce₅CoGe₂$, and (J) $CeCo_{13-x}Ge_x$.

 \sim 1.25 Å [\[21\], r](#page-5-0)Ge \sim 1.23 Å [\[22\]\)](#page-5-0) as reflected by the homogeneity ranges of the equilibrium phases Co–Ge binary subsystem and the extensions into the ternary system of two binary subsystems Ce–Co and Ce–Ge. In agreement with the previous study [\[3\], s](#page-5-0)ix significant binary extensions are observed. Their observed crystallographic structure and homogeneity ranges are compiled in Table 4. Evaluation of the solubility of Ge in the binary phase $Ce₅Co₁₉$ was severely hampered by the proximity of the $Ce₂Co₇$ phase, yielding phase-fields of extremely narrow area. The homogeneity range of the binaries CeGe_{2−x} shows a maximum phase width of 5% at Co, with a unique crystallographic form based on the $GdSi₂$ structure type. It has to be noted, that neither the $ThSi₂$ -type nor the Y₃Ge₅-type has been observed into the ternary system.

The isothermal section at 700 ℃ presents ten intermediate phases, including eight well-defined compounds: CeCoGe, $CeCo₂Ge₂, Ce₂Co₃Ge₅, Ce₂CoGe₃, Ce₅Co₄Ge₁₃, CeCoGe₃, Ce₃CoGe₂$ and Ce₅CoGe₂ and two intermediate solid solutions; CeCo_{1-x}Ge₂ and the new phase $CeCo_{13-x}Ge_x$. Compositions, homogeneity ranges and crystallographic data of the intermediate phases are gathered in [Table 5. T](#page-4-0)he present results for the ternary CeCo_{1−x}Ge₂ $(0 \le x \le 0.24)$ phase, which crystallizes with orthorhombic CeNiSi₂type (space group Cmcm, no. 63) was found to exhibit a slightly longer homogeneity range than in the preceding study ($0 \le x \le 0.22$) [\[7\]. H](#page-5-0)owever, the observed mechanism based on vacancies on the 3 d metal site (x) remains unchanged. The substitution mechanism for CeCo_{13−x}Ge_x with $4 \le x \le 4.5$ is based on the mutual substitution of Co/Ge, presumably on the 16lWyckoff site of the tetragonal space

Table 4

Crystalline forms, lattice parameters and homogeneity domains of the ternary extensions of the binary compounds in the Ce–Co–Ge system.

Binary compound	Structure type	Space group	Solid solution range	Lattice parameters (Å) for the lowest and highest limit of solubilities.		
				$\mathfrak a$	h	
CeCo ₂	MgCu ₂	Fd3m	4 at % Ge	7.161-7.220	-	$\overline{}$
CeCo ₃ Ce ₂ Co ₇	PuNi ₃ Ce ₂ Ni ₁₇	R3m $P6_3/mmc$	3 at.% Ge 2.5 at.% Ge	4.955-4977 4.980-4.935	- -	24.720-24.840 24.520-24.446
Ce ₅ Co ₁₉	Ce ₅ Co ₁₉	R3m	Not determined	4.954	-	48.718
CeCo ₅	CaCu ₅	P6/mmm	12 at.% Ge	4.928-4.958	-	4.018-4.061
Ce ₂ Co ₁₇ $CeGe_{2-x}$	Th ₂ Ni ₁₇ GdSi ₂	$P6_3/mmc$ Imma	10 at.% Ge 5 at.% Co	8.388-8.473 4.260-4.216	- 4.347-4.192	8.144-8.205 14.087-14.379

Table 5

Crystalline forms, lattice parameters and homogeneity domains of the ternary compounds in the Ce–Co–Ge system.

group, I4/mcm, as observed for La(Fe, Si)₁₃ [\[23\].](#page-5-0) This new phase, $CeCo_{13-x}Ge_x$, which is in equilibrium with four phases, namely $CeCo₂Ge₂$, $Co₅Ge₃$, $Co₃Ge$ and Co appears to be stable in a wide range of temperature, as it is observed in as-cast and annealed (700 \degree C) samples.

4.3. Discussion on the crystallographic data and phase formation

In order to eliminate contradicting information in the literature on the crystal structure of $Ce₂Co₃Ge₅$ compound, a careful examination of its crystal-chemistry behaviour was carried out. $Ce₂Co₃Ge₅$ adopts the orthorhombic $U₂Co₃Si₅$ structure type at 700 °C. Moreover, structural investigations performed on samples in as-cast state and after heat-treatment at various temperatures, revealed that only the orthorhombic form is observed and never the monoclinic one. The structural phase transition was confirmed for $Ce₅CoGe₂$, which presents the hexagonal $Mn₅Si₃$ structure type in as-cast samples whereas, the orthorhombic Y_2HfS_5 structure is found stable at 700 ◦C. Differential Thermal Analysis (DTA) measurements (Labsys-Setaram) revealed weak thermal effect between room temperature and 1400° C which may be associated to this transition. The temperature of the structural phase transition is suggested to be about 830 °C.

Fig. 4. Back scattered image of the microstructure of a sample of nominal composition Ce:Co:Ge of 5:1:4 annealed at 700 ◦C for 3 weeks. The grey area has an atomic composition in agreement with the binary $Ce₅Ge₄$ and the darker area presents an atomic composition in agreement with CeCoGe.

The formation of the ternary phases, namely $Ce₃CoGe₆$, $Ce₁₅Co₄Ge₃₁$ and $Ce₅CoGe₄$ reported in the previous study [\[1\]](#page-5-0) of this system was not confirmed in the present investigation. Powder XRD analyses as well as metallographic observations on samples with initial compositions of Ce:Co:Ge of 3:1:6 and 15:4:31 revealed that these compositions belong to two-phases field and three-phases field involving CeGe_{2−x}Co_x, CeCoGe₃ and CeGe_{2−x}Co_x, CeCoGe₃ and Ce₅Co₄Ge₁₃ ternary phases, respectively.

Similarly a sample with nominal composition of Ce:Co:Ge of 5:1:4 has been melted and heat-treated at 700 ◦C. The microstructure as well as the X-ray powder pattern of the annealed and as-cast state of the sample, revealed a solid state equilibrium between the ternary compound CeCoGe and the binary compound Ce₅Ge₄. The microstructure and the powder pattern of the annealed sample are depicted in Figs. 4 and 5, respectively. The weak diffraction peaks non-indexed in the two previous unit-cells, can be attributed to a small amount of $Ce₂O₃$, as impurity. Changes around the initial composition yield samples in the three-phases field involving $Ce₅Ge₄ - CeCoGe-CeCo₂Ge₂$ or

Fig. 5. X-ray powder pattern of a sample of nominal composition Ce:Co:Ge of 5:1:4 annealed at 700 ◦C for 3 weeks. All the diffraction peaks were indexed with both the tetragonal structure of PbFCl adopted by CeCoGe with the lattice parameters $a = 4.189 \text{ Å}$; $c = 6.863 \text{ Å}$ (continuous line in dark grey-upper) and the orthorhombic structure Sm₅Ge₄ adopted by Ce₅Ge₄ with lattice parameters $a = 7.985 \text{ Å}$; $b = 15.295$ Å; $c = 8.085$ Å (continuous line in medium grey—intermediaite).

 $Ce₅Ge₄ - CeCoGe-Ce₃CoGe₂$, confirming the absence of formation of Ce₅CoGe₄ compound.

Acknowledgements

This work was partially supported by the French–Polish Integrated Activity Program "POLONIUM" no. 20080PM (2008–2009). The authors acknowledge the use of the Nonius Kappa CCD diffractometer through the Centre de Diffraction X de l'Université de Rennes1 (CDIFX). We also thank Isabelle Peron, Caroline Leynia, Sandra Casale and the Centre de Microscopie Électronique à Balayage et microAnalyse (CMEBA) for the EDS-analysis.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.jallcom.2009.08.158](http://dx.doi.org/10.1016/j.jallcom.2009.08.158).

References

- [1] M.B. Konyk, O.I. Bodak, J. Alloy Compd. 267 (1998) 189–191.
- [2] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams, vols. 1–3, second ed., ASM International, 1990.
- [3] R.E. Gladyshevsky, O.I. Bodak, Dopov. Ukr. RSR, Ser. A 5 (1965) 601–604.
- [4] W. Rieger, E. Parthé, Monatsh. Chem. 100 (1969) 444–454.
- [5] G. Venturini, M. Meot-Meyer, B. Malaman, B. Roques, J. Less-Common Met. 113 (1985) 197–204.
- [6] M. Méot-Meyer, G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 20 (1985) 1515–1521.
- I. Das, E.V. Sampathkumaran, Solid State Commun. 83 (1992) 765–770.
- [8] G. Venturini, M. Méot-Meyer, J.M. Mareche, B. Malaman, B. Roques, Mater. Res. Bull. 21 (1986) 33–39.
- [9] R. Welter, G. Venturini, B. Malaman, E. Ressouche, J. Alloy Compd. 201 (1993) 191–196.
- [10] O.L. Sologub, P.S. Salamakha, C. Godart, J. Alloy Compd. 307 (2000) 31–39.
- [11] B. Belan, J. Stephen-Damm, R. Gladyshevskii, O. Bodak, Chem. Met. Alloys 1 (2008) 41–43.
- [12] W. Kraus, G. Nolze, PowderCell for Windows v. 2. 4, Federal Institute for Materials Research and Testing, Berlin, Germany, 2000.
- [13] Brüker-AXS, In: Collect, Denzo, Scalepack, Sortav. Kappa CCD Program Package, Brüker AXS, Delft, The Netherlands, 1998.
- [14] R.H. Blessing, Acta Crystallogr. A 51 (1995) 33–38.
- [15] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R.J. Spagna, J. Appl. Crystallogr. 32 (1999) 115–119.
- [16] G.M. Sheldrick, SHELXS97 and SHELXL97. Program for Structure Solution and Refinement, University of Göttingen, Germany, 1997.
- [17] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139–143.
- [18] O.I. Bodak, Sov. Phys. Crystallogr. 24 (1979) 732–734.
- [19] W.H. Tang, J.K. Lang, X.L. Chen, G.H. Rao, J. Appl. Phys. 76 (1994) 4095–4098. [20] S. Singh, M.L. Fornasini, P. Manfrinetti, A. Palenzona, S.K. Dhar, P.L. Paulose, J. Alloy Compd. 317–318 (2001) 560–566.
- [21] E. Teatum, K. Gschneidner, J. Waber, Compilation of Calculated Data Useful in Predicting Metallurgical Behaviour of the Elements in Binary Alloy Systems, Los Alamos Scientific Laboratory, LA, 1960, pp. 2345.
- [22] M.E. Straumanis, E.Z. Aka, J. Appl. Phys. 23 (1952) 330–334.
- [23] H. Mikyung, G.J. Miller, Ind. Heat. 47 (2008) 515–528.